Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows
نویسندگان
چکیده
The ability to electrically control transparency and scattering of light is important for many optoelectronic devices; however, such versatility usually comes with additional unwanted optical absorption and power loss. Here we present a hybrid switchable solar window device based on polymer dispersed liquid crystals (PDLCs) coupled to a semiconducting absorber, which can switch between highly transmissive and highly scattering states while simultaneously generating power. By applying a voltage across the PDLC layer, the device switches from an opaque, lightscattering structure (useful for room light dimming, privacy, and temperature control) to a clear, transparent window. Further, enabled by the very low operating power requirements of the PDLC (<0.8 mW/cm), we demonstrate that these switchable solar windows have the potential for self-powering with as little as 13 nm of a-Si.
منابع مشابه
Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer
Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...
متن کاملNanophotonic light trapping in solar cells
Related Articles Nanophotonic light trapping in solar cells App. Phys. Rev. 2012, 11 (2012) Minimizing reflection losses from metallic electrodes and enhancing photovoltaic performance using the Simicrograting solar cell with vertical sidewall electrodes Appl. Phys. Lett. 101, 103902 (2012) Comparison of periodic light-trapping structures in thin crystalline silicon solar cells J. Appl. Phys. 1...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملElectrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials.
Anisotropic phase separation has been used to fabricate an electrically switchable microlens array from nematic liquid crystals. Nematic liquid-crystal-based microlens arrays have been built with diameters of approximately 400 microm and natural focal lengths as small as 1.6 mm. The focal length of each microlens in the array can be changed in milliseconds by an applied electric field. These de...
متن کاملDistributed Reflector Structure and Diffraction Grating Structure in the Solar Cell
Today, due to qualitative growth and scientific advances, energy, especially electricity is increasingly needed by human society. One of the almost endless and pure energy which have been paid attention over the years is the solar energy. Solar cells directly convert solar energy into electrical energy and are one of the main blocks of photovoltaic systems. Significant improvement has been made...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016